Further Developments in the Use of Combination Phase II/III Designs to Accelerate Drug Development

- Jonathan R. Smith, Ph.D.

June 18th, 2003, DIA Annual Meeting, San Antonio

Outline of Presentation

- Potential uses of Phase II/III combination designs
- Derivation & Properties of 2 look Phase II/III designs
 - Type I error control
 - Power and Sample Size calculation
 - Optimal Timing of Interim
- Comparison vs. separate Phase II & Phase III
 - Sample Size savings
 - Time Savings
- Future Work
- Conclusions

Situations Where Adaptive Designs are Most Useful

To obtain maximal benefit from use of interim analysis or adaptive design we would like:

- 1. Length of Follow-up to be short relative to duration of enrollment
- 2. Short time from LPV to Interim Analysis decision
 - EDC can help cut this time
- 3. Randomization via IVR if arms can be dropped

Note: If follow-up is long but onset of action is rapid we can overcome #1 by using results on the primary endpoint from an earlier visit, or by using a surrogate.

<u>Phase II/III Combination Trial -</u> <u>Situations Where this could be Useful</u>

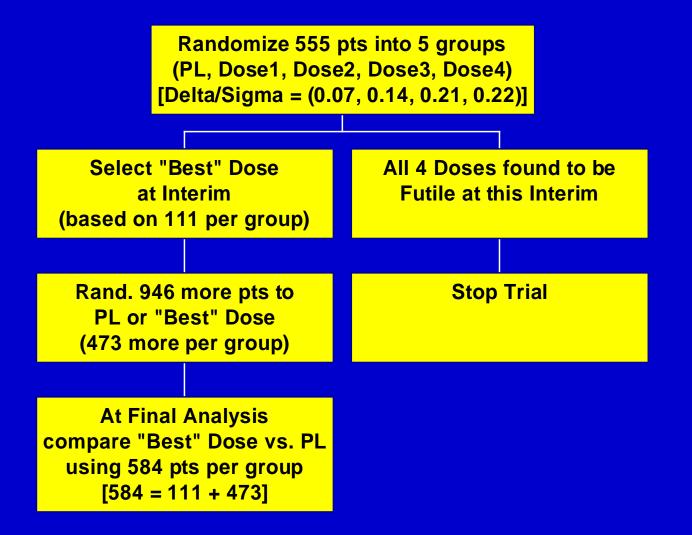
- Range of doses will likely cover optimal dose
 so that arms will not need to be added
- At most 6 doses still under consideration
- Major safety concerns not likely to apply to very many doses

- otherwise separate Phase II is probably preferable

<u>Phase II/III Combination Trial -</u> Situations Where this could be Useful, cont'd

- Certain Single Study Submissions with a doseranging component (provided that SSS has sufficient outside "confirmatory evidence")
 - Large multicenter study (with the same Phase II, III endpoints)
 - New stage of disease, closely related disease
 - New patient population
 - New combination therapy
 - Orphan indication or other rare disease

<u>Phase II/III Combination Trial -</u> Situations Where this could be Useful, cont'd


- Where sponsor would otherwise carry out Phase II, Phase III #1, Phase III #2 in sequence, perhaps due to limited funds
- In place of a multi-armed Phase III trial
 - e.g., in place of past "Phase III trial" that included 5 doses and Placebo

<u>Aims of Phase II/III Combination Studies</u> <u>Considered Here</u>:

- Combine dose selection and confirmatory stages
 - start with 2-5 doses + placebo
- Select "Best" dose at Interim and continue with "Best" dose & Placebo
- Stop study early if all doses are determined at interim to be ineffective

Note: Could also incorporate additional interims to stop for success, as in Smith (2002), and Stallard & Todd (2003)

Flowchart for Phase II/III Design

Phase II/III Combination Design

- 1. At start randomize to PL, D_1, \dots, D_k
- 2. At Interim
 - Choose "Best" dose D_{BD}
 - Decision rule specified in protocol & administered by independent group
 - Stop if all D_i futile
 - Randomize to PL, D_{BD} from now onwards
- 3. At Final
 - Test D_{BD} vs. PL at level α_2
 - Efficacy demonstrated if test statistic $\geq Z_{1-\alpha 2}$

Notation and Assumptions

- Assume data is normally distributed
 Can also be applied to binary or survival data
- Z_{iDj} = test statistic at look #i for D_j vs. PL
- We test at 1-sided α_2 at EOS
- $Z_{1BD} < Z_{1-\alpha 0}$ is futility decision rule used to stop study at interim (with corresp. CP)
- n_1 per group at interim; n_2 per group by EOS; with $\tau = n_1/n_2$ the information fraction

Experimentwise Type I Error

Type I error is given by

$\sum_{j=1}^{k} P(Z_{1Dj} \ge Z_{1-\alpha_0} \cap Z_{2Dj} \ge Z_{1-\alpha_2} \cap D_j \text{ selected })$

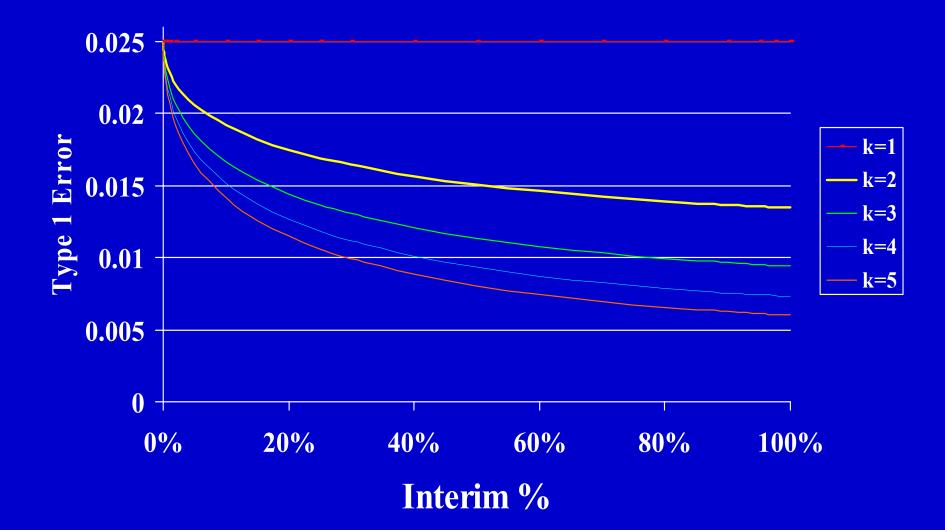
Note: this applies whatever decision rule is used to select D_j

Experimentwise Type I Error, cont'd

Suppose decision rule at interim is to choose D_j corresponding to highest Z_{1Dj} .

T1E =
$$\sum_{j=1}^{k} P(Z_{2j} \ge Z_{1-\alpha 2} / Z_{1j} = \max(Z_{11}, ..., Z_{1k}))$$

* $P(Z_{1j} = \max(Z_{11}, ..., Z_{1k}))$


Note: In case sponsor overrides DSMB recommendation to stop trial for futility, α_2 calculation here has not made use of built in futility look to increase α_2 further.

See also Simon et al (1994), Hsu et al (1997), Smith (2002), Stallard & Todd (2003), Soo, Lan & Shun (2003)

Calculation of Critical Alpha levels

- Equate T1E expression to $\alpha = 0.025$ (1-sided)
- With equal replication of active arms this can be expressed as a 1d integral (at least 2 different ways)
- Evaluate 1d integral numerically
 - Higher dimensional integrals needed when actives are not equally replicated
- For given τ , k, α , solve (iteratively) for α_2

<u>Critical Alpha Value as a Function of</u> <u>Timing for Interim and # of Active Arms</u></u>

Critical Alpha levels

k	0.1%	10%	20%	50%	99.9%	Dunnett's alpha
1	0.02500	0.02500	0.02500	0.02500	0.02500	0.02500
2	0.02428	0.01918	0.01751	0.01510	0.01350	0.01348
3	0.02393	0.01667	0.01443	0.01136	0.00944	0.00941
4	0.02370	0.01517	0.01266	0.00933	0.00733	0.00731
5	0.02353	0.01414	0.01147	0.00803	0.00603	0.00601

Determination of Power & Sample Size

• <u>Power</u>

- power is function of α_2 , k, τ , Δ , and N_{tot}
 - where $N_{tot} = n_1^*(k+1) + 2^*(n_2-n_1)$
- evaluated analytically here via 2k, 1d integrals

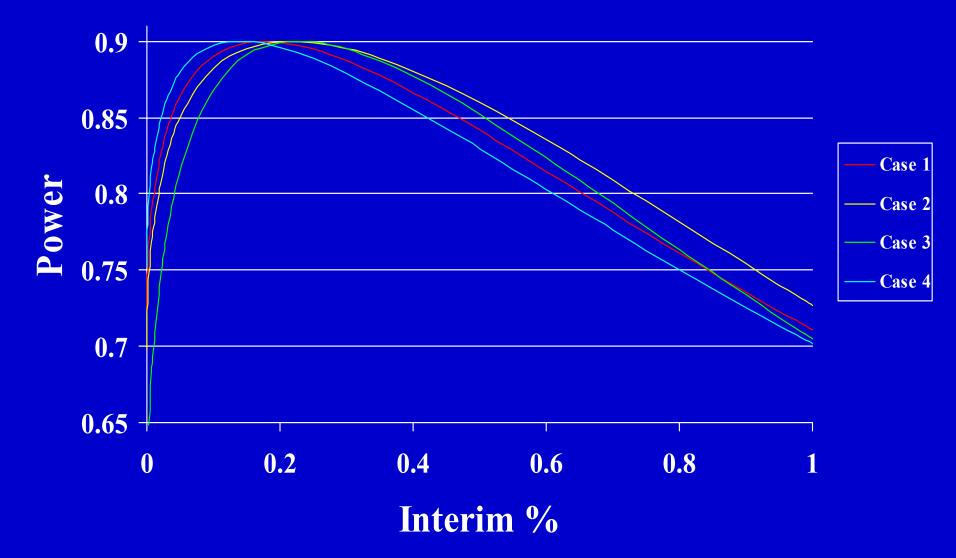
• <u>Sample Size (SS)</u>

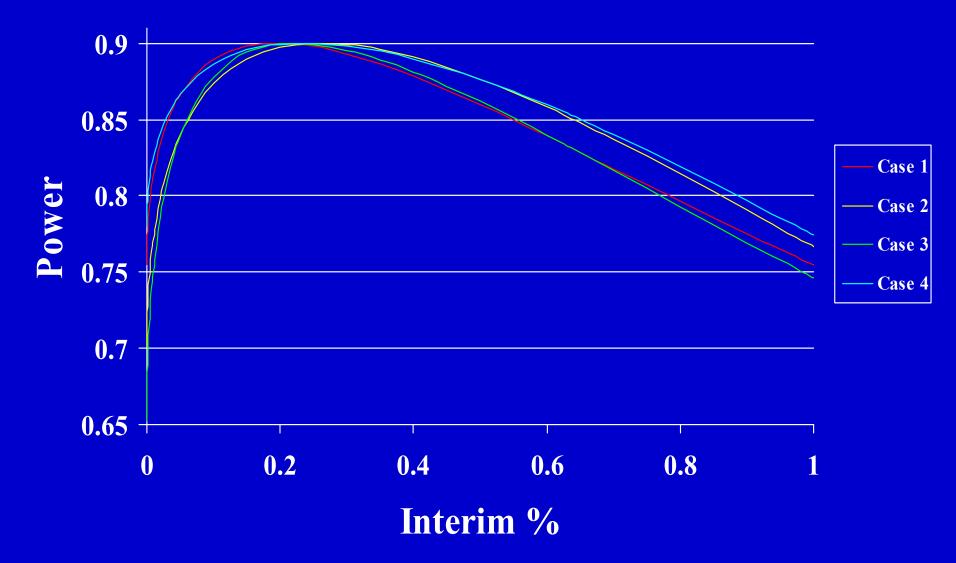
– Optimal Phase II/III design (for given α_2 , k, Δ , and power) takes $\tau = \tau_{opt}$

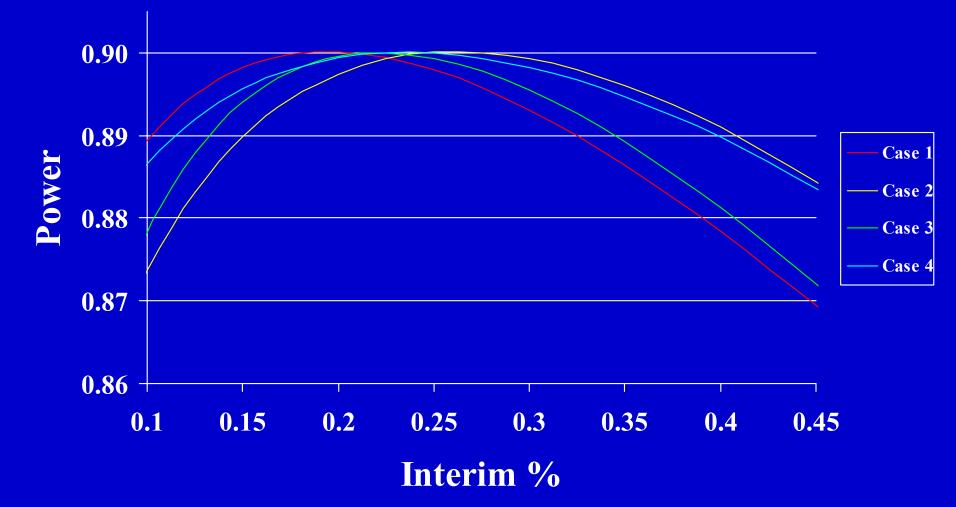
• where
$$S(\tau_{opt}) = \min S(\tau)$$

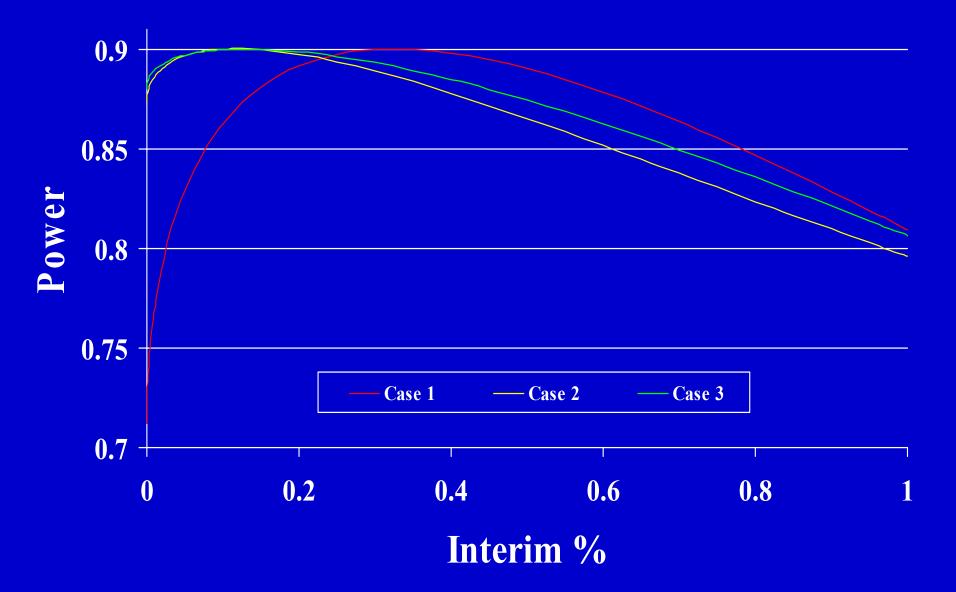
Example of Optimal Phase II/III Design

- $k=4, \underline{\Delta}' = (0.07\sigma, 0.14\sigma, 0.21\sigma, 0.22\sigma)$
- Minimum total sample size to give 90% power is $N_{tot} = 1501$
 - $-\tau_{opt} = 0.19$
 - all other values of τ give a greater sample size
 - $-n_1 = 113$ per group at interim
 - $-n_2 = 581$ per group at EOS
 - here $\alpha_2 = 0.01276$ to guarantee T1E = 0.025

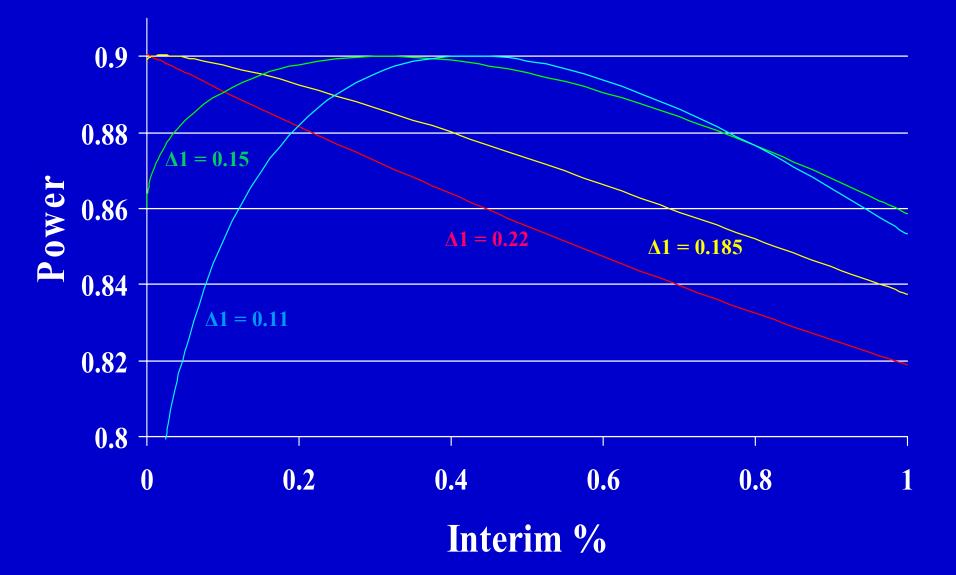

Optimal Timing of Interim

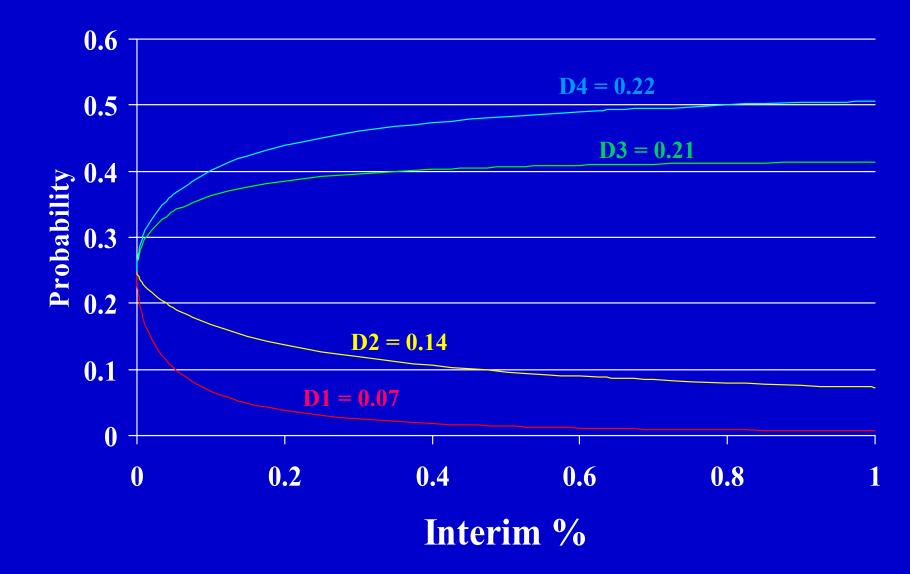

- Investigated for k = 2, 3, 4, and 5 active arms
- k=4 active arms 4 cases
 - $-\underline{\Delta}' = (0.07\sigma, 0.14\sigma, 0.21\sigma, 0.22\sigma)$ asymptotic
 - $-\underline{\Delta}' = (0.06\sigma, 0.12\sigma, 0.18\sigma, 0.24\sigma)$ linear
 - $-\underline{\Delta}' = (0.03\sigma, 0.11\sigma, 0.20\sigma, 0.23\sigma)$ sigmoidal
 - $-\underline{\Delta}' = (0.08\sigma, 0.16\sigma, 0.24\sigma, 0.16\sigma)$ curve turns


Optimal Timing of Interim


- k=5 four shapes similar to k=4
- k=3 asymptotic, linear, curve turns
- k=2 active arms 4 cases
 - $-\underline{\Delta'} = (0.22\sigma, 0.22\sigma)$
 - $-\underline{\Delta'} = (0.185\sigma, 0.22\sigma)$
 - $-\underline{\Delta'} = (0.15\sigma, 0.22\sigma)$
 - $-\underline{\Delta'} = (0.11\sigma, 0.22\sigma)$

 $\Delta_1 / \Delta_2 = 1.0$ $\Delta_1 / \Delta_2 = 0.84$ $\Delta_1 / \Delta_2 = 0.68$ $\Delta_1 / \Delta_2 = 0.50$





Optimal Tau based on Power alone, k=5

Case	$ au_{opt}$	Power	Power	Power
		$\tau = 0$	$\tau = \tau_{opt}$	$\tau = 1$
1	0.18	72.1%	90.0%	71.1%
2	0.22	69.8%	90.0%	72.7%
3	0.23	57.5%	90.0%	70.5%
4	0.14	75.2%	90.0%	70.2%

Probability of Selecting each Dose at Interim Case 1, K=4

Timing of Interim

- When determining timing of Interim #1 seek to balance
 - (a) Need for high power in current study
 - (b) High chance that "best dose" is selected at interim #1
 - (c) Time of interim is late enough for good doseresponse information to be obtained
- With k=4, τ_{opt} ∈ (0.19, 0.26), but τ=0.32 0.41 (depending on curve shape) may be preferable when allow for (b)-(c)
 – retains power at 89%

<u>Timing of Interim</u>

- When allow for (b) and (c) following would be preferable:
 - for k = 5, τ = 0.24 0.33 (depending on curve shape)
 - for k = 3, $\tau = 0.28$ 0.50 (depending on curve shape)
- For k = 2 (see also Soo, Lan, & Shun, 2003)
 - for Δ_1 / Δ_2 in the range 0.5 0.68, having the interim at τ = 0.6 still gives \geq 89% power + keeping all 3 arms until EOS (τ =1) gives \geq 85% power
 - for Δ_1 / Δ_2 in the range 0.84 1.0, $\tau = 0$ gives best power, but no measure of dose-response

Comparison of Phase II/III Designs with Separate Phase II and Phase III, based on

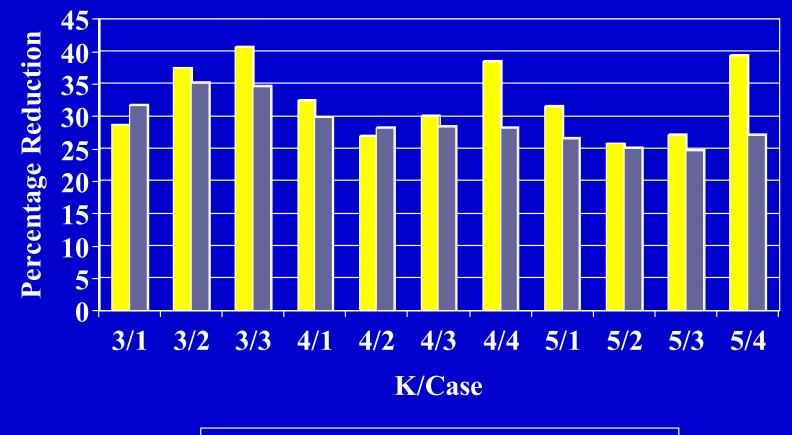
(a) Sample Size

(b) Timelines

Comparisons based on Sample Size

- K=3, 4, 5 with 3-4 cases each, as before
- In Phase II/III (with 0<τ<1) also have patients enrolled between last interim patient and implementation of dropping k-1 arms
 - Assume primary endpoint at 30 days
 - 4w from LPV to drop (k-1) arms
- Enrollment rate chosen to enroll Ph II/III in 12m
- Sample size for Phase IIs based on Williams' test with 80% power
- Assume 90d between Ph II's LPO and Ph III's FPI

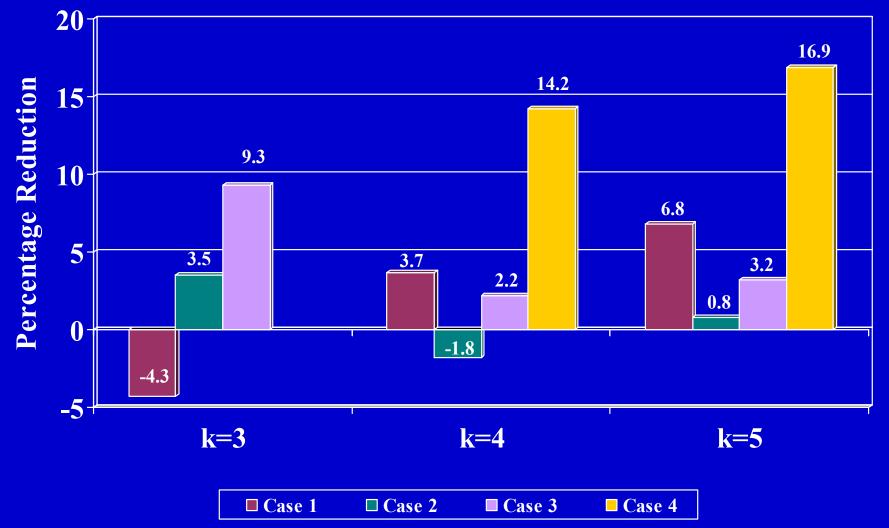
Comparisons based on Sample Size, cont'd


• Scenario 1

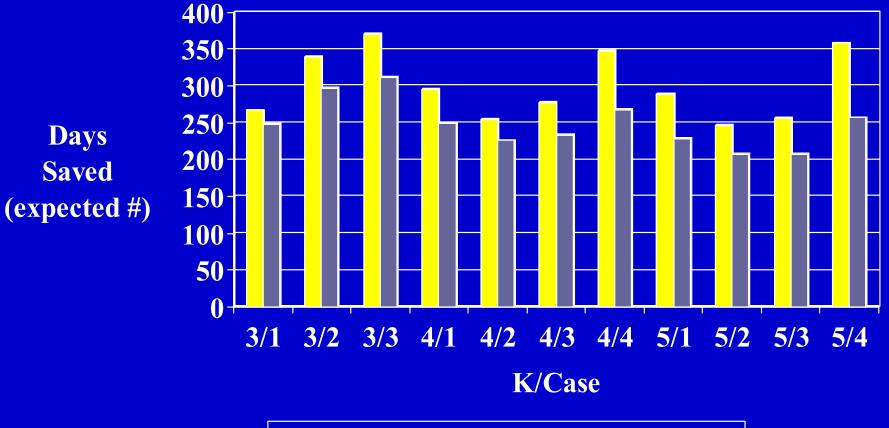
- Phase II not carried out to Phase III standards always followed by Phase III
- Phase III based on arm with max Z from Phase II

• Scenario 2

- Phase II is carried out to Phase III standards only followed by Phase III if all primary comparisons are nonsignificant (using Step-down Dunnett's for MC)
- Phase III based on arm with max Z from Phase II, but using max amongst those with non-significance

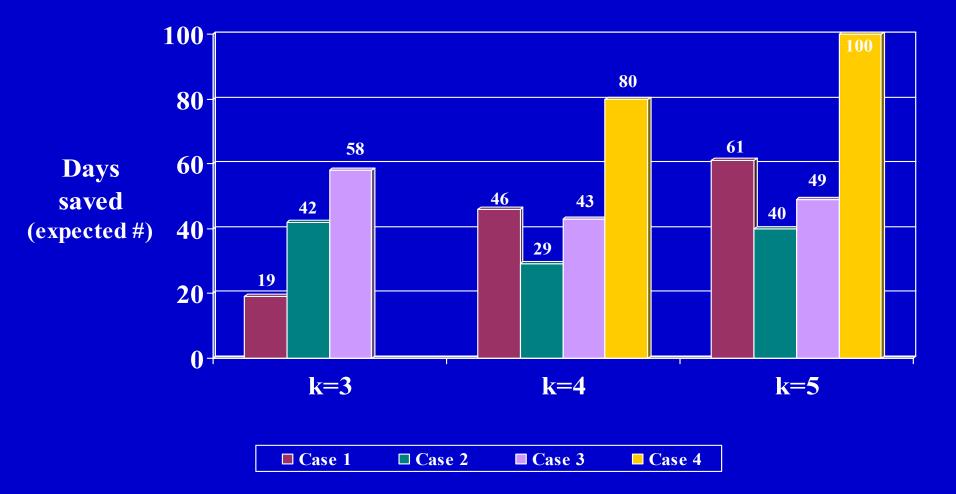

<u>Percentage Reduction in Sample Size</u> vs Scenario 1 (Phase II + Phase III always)

□ Ph II/III □ Phase II + Condit. Ph III


Note: Ph II/III also gives large % reduction in # of pts vs Scenario 1 in all 11 cases with 60d, or 90d primary endpt.

<u>Percentage Reduction in Sample Size from Phase II/III</u> <u>vs Scenario 2 (Phase II + conditional Phase III)</u>

Note: We do not obtain a reduction in # of pts vs Scenario 2 in all cases with 60d, or 90d primary endpoint.


<u>Shortening of Timeline</u> vs Scenario 1 (Phase II + Phase III always)

□ Ph II/III □ Phase II + Condit. Ph III

Note: Ph II/III also gives large time savings vs Scenario 1 in all 11 cases with 60d, or 90d primary endpoint.

<u>Shortening of Timeline through Phase II/III</u> vs Scenario 2 (Phase II + conditional Phase III)

Note: Ph II/III also gives a time saving vs Scenario 2 in all 11 cases with 60d, or 90d primary endpoint.

Further Work

- Extensions to decision rules when we keep 1 dose after interim
 - Allow for shape of dose-response curve in decision rule
 - Take account of safety problem chance at each dose
 - Allow for dose selection on early visit of primary endpoint, or on a surrogate (see Todd, 2003)
 - particularly useful when patient duration \geq 90d
- Devise rules based on allowing 2 doses (& PL) to be kept at interim

Conclusions & Practical Considerations

- Methodology presented allows combination of dose-finding and confirmatory stage within one study without stopping
- Allows for dose selection based on Phase III primary endpoint
- Allows early stopping if all doses ineffective

Conclusions & Practical Considerations

- Type 1 error is controlled exactly at 0.025
- Rules should be fully pre-specified in protocol
- Use independent group to operate rules
- Discuss with FDA in advance if plan to conduct a Phase II/III combination study

Conclusions & Practical Considerations

- If we start with 3-5 doses of test drug, then Phase II/III design gives high power
- Where this approach is consistent with needs of the program, Phase II/III design can:
 - Cut Costs by Reducing Number of Patients
 - by 32% vs Scenario 1; by 3.5% vs Scenario 2
 - Cut Drug Development Time
 - by 289d vs Scenario 1; by 46d vs Scenario 2

[Above results are medians of 11 cases considered, based on 30d endpoint]